
      

Simularea Examenului național de bacalaureat 2026 

Proba E. c) 

Matematică M_mate-info 
 

Barem de evaluare şi de notare  
 

Filiera teoretică, profilul real, specializarea matematică-informatică 

• Pentru orice soluţie corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.  

• Nu se acordă fracţiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parţiale, în limitele punctajului 

indicat în barem.  

• Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărţirea la 10 a punctajului total acordat pentru lucrare. 
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